[zurück]

4. Literatur

[vor]
1. Chaos blog - JLS
3-cells CNN chaotic system
http://jlswbs.blogspot.de/2012/04/3-cells-cnn.html
2. Chaos blog - JLS
Arneodo chaotic system
http://jlswbs.blogspot.de/2012/03/arneodo.html
3. Chaos blog - JLS
Sprott-Linz S chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-s.html
4. Chaos blog - JLS
Sprott-Linz R chaotic attractor
http://jlswbs.blogspot.de/2011/10/sprott-r.html
5. Chaos blog - JLS
Sprott-Linz Q chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-q.html
6. Chaos blog - JLS
Sprott-Linz P chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-p.html
7. Chaos blog - JLS
Sprott-Linz O chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-o.html
8. Chaos blog - JLS
Sprott-Linz N chaotic attractor
http://jlswbs.blogspot.de/2011/10/sprott-n.html
9. Chaos blog - JLS
Sprott-Linz M chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-m.html
10. Chaos blog - JLS
Sprott-Linz L chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-l.html
11. Chaos blog - JLS
Sprott-Linz K chaotic attractor
http://jlswbs.blogspot.de/2012/03/sprott-linz-k.html
12. Chaos blog - JLS
Sprott-Linz J chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-j.html
13. Chaos blog - JLS
Sprott-Linz I chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-i.html
14. Chaos blog - JLS
Sprott-Linz H chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-h.html
15. Chaos blog - JLS
Sprott-Linz G chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-g.html
16. Chaos blog - JLS
Sprott-Linz F chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-f.html
17. Chaos blog - JLS
Sprott-Linz E chaotic attractor
http://jlswbs.blogspot.de/2011/10/sprott-e.html
18. Chaos blog - JLS
Sprott-Linz D chaotic attractor
http://jlswbs.blogspot.de/2011/10/sprott-d.html
19. Chaos blog - JLS
Sprott-Linz C chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-c.html
20. A New Three-Scroll Unified Chaotic System Coined
Lin Pan, Wuneng Zhou, Jian’an Fang, Dequan Li
International Journal of Nonlinear Science, Vol.10(2010) No.4,pp.462-474
http://www.internonlinearscience.org/upload/papers/20110618025420887.pdf
21. Chaos blog - JLS
Sprott-Linz B chaotic attractor
http://jlswbs.blogspot.de/2012/02/sprott-linz-b.html
22. Chaos blog - JLS
Sprott-Linz A chaotic attractor
http://jlswbs.blogspot.de/2012/02/linz-sprott.html
23. A NEW CHAOTIC SYSTEM AND BEYOND: THE GENERALIZED LORENZ-LIKE SYSTEM
JINHU LÜ, GUANRONG CHEN, DAIZHAN CHENG
International Journal of Bifurcation and Chaos, Vol. 14, No. 5 (2004) 1507-1537
http://lsc.amss.ac.cn/~ljh/04LCC.pdf
24. Chaos blog - JLS
Thomas cyclically symetric attractor
http://jlswbs.blogspot.de/2011/09/thomas.html
25. Chaos blog - JLS
Chen-Celikovsky chaotic attractor
http://jlswbs.blogspot.de/2011/10/chen-celikovsky.html
26. A NEW CHAOTIC ATTRACTOR COINED
JINHU LÜ, GUANRONG CHEN
International Journal of Bifurcation and Chaos, Vol. 12, No. 3 (2002) 659-661
http://lsc.amss.ac.cn/~ljh/02LC.pdf
27. Chaos blog - JLS
Shimizu-Morioka chaotic attractor
http://jlswbs.blogspot.de/2011/10/shimizu-morioka.html
28. 1980 The Shimizu-Morioka system
T. Shimizu & N. Morioka
ATOMOSYD
http://www.atomosyd.net/spip.php?article75
29. Chaos blog - JLS
Nose-Hoover chaotic attractor
http://jlswbs.blogspot.de/2011/10/nose-hoover.html
30. Chaos blog - JLS
Strizhak-Kawczynski chaotic oscillator
http://jlswbs.blogspot.de/2011/10/strizhak-kawczynski.html
31. Slow manifold structure and the emergence of mixed-mode oscillations
Andrei Goryachev, Peter Strizhak, Raymond Kapral
J. Chem. Phys., Vol. 107, No. 8, 22 August 1997
http://www.biology.ed.ac.uk/research/groups/goryachev/Papers/jcp97.pdf
32. Chaos blog - JLS
Rayleigh-Benard chaotic oscillator
http://jlswbs.blogspot.de/2011/10/rayleigh-benard.html
33. Chaos blog - JLS
Sakarya chaotic attractor
http://jlswbs.blogspot.de/2011/10/sakarya.html
34. Chaos blog - JLS
Aizawa chaotic attractor
http://jlswbs.blogspot.de/2011/10/aizawa.html
35. Chaos blog - JLS
Newton-Leipnik attractor
http://jlswbs.blogspot.de/2011/10/newton-leipnik.html
36. Adaptive control and synchronization of the Newton-Leipnik systems
Xuedi Wang, Chao Ge
Journal of Information and Computing Science, Vol. 3, No. 4, 2008, pp. 281-289
http://www.worldacademicunion.com/journal/1746-7659JIC/jicvol3no4paper04.pdf
37. Chaos blog - JLS
Burke-Shaw chaotic attractor
http://jlswbs.blogspot.de/2011/10/burke-shaw.html
38. 1981 The Burke & Shaw system
Bill Burke & Robert Shaw
ATOMOSYD
http://www.atomosyd.net/spip.php?article33
39. Chaos blog - JLS
Rucklidge chaotic attractor
http://jlswbs.blogspot.de/2011/10/rucklidge.html
40. Description of strange attractors using invariants of phase-plane
DUMITRU DELEANU
http://www.wseas.us/e-library/conferences/2011/Iasi/DYMANOW/DYMANOW-17.pdf
41. Chaos blog - JLS
Halvorsen chaotic attractor
http://jlswbs.blogspot.de/2011/10/halvorsen.html
42. SPROTT / lorenz
EC JOURNAL . Winter 2008
http://sprott.physics.wisc.edu/lorenz.pdf
43. Chaos blog - JLS
Hadley chaotic circulation
http://jlswbs.blogspot.de/2011/10/hadley.html
44. A Novel Strange Attractor with a Stretched Loop
Safieddine Bouali
University of Tunis, Management Institute, Department of Quantitative Methods & Economics
http://arxiv.org/ftp/arxiv/papers/1204/1204.0045.pdf
45. Feedback loop in extended Van der Pol`s equation applied to an economic model of cycles
Safieddine Bouali
International Journal of Bifurkation and Chaos, Vol. 9, No. 4 (1999) 745 - 756
http://s1.e-monsite.com/2009/08/29/80052934bouali-ijbc-pdf.pdf
46. Chaos Control and Projective Synchronization of a Chaotic Chen-Lee System
Yin Li, Biao Li1
CHINESE JOURNAL OF PHYSICS VOL. 47, NO. 3 JUNE 2009
47. Poincar´e sections for a new three-dimensional toroidal attractor
Christophe Letellier & Robert Gilmore
http://www.physics.drexel.edu/~bob/Papers/Torochaos.pdf
48. A New Finance Chaotic Attractor
Guoliang Cai,Juanjuan Huang
International Journal of Nonlinear Science, Vol. 3 (2007) No. 3, pp. 213-220
http://www.internonlinearscience.org/upload/papers/20110308103218810.pdf
49. Tamari attractor
Wikipedia
http://en.wikipedia.org/wiki/Tamari_attractor
50. Tamari attractor
Ben Tamari
http://www.bentamari.com/attractors.html
51. Computer Simulation on the Gumowski-Mira Transformation
Kenji OTSUBO, Masakazu WASHIDA, Takao ITOH, Kazuo KATSUURA and Masaki HAYASHI
http://www.scipress.org/journals/forma/pdf/1502/15020121.pdf
52. Mira Fractal
Wolfram MathWorld
http://mathworld.wolfram.com/MiraFractal.html
53. Attractors: Nonstrange to Chaotic
Robert L. V. Taylor; The College of Wooster
http://www.siam.org/students/siuro/vol4/S01079.pdf
54. FractMus Math
Gustavo Diaz-Jerez
http://www.gustavodiazjerez.com/gdj/?cat=15
55. Shilnikov's Saddle-Node Bifurcation
Sparrow, Colin; Glendinning, Paul
HP Labs Technical Reports
http://www.hpl.hp.com/techreports/96/HPL-BRIMS-96-07.html
56. Parameter-sweeping techniques for temporal dynamics of neuronal systems: Hindmarsh-Rose model
Roberto Barrio, Andrey Shilnikov
http://131.96.40.35/hm_chaos.pdf
57. Hindmarsh–Rose model
Wikipedia
http://en.wikipedia.org/wiki/Hindmarsh%E2%80%93Rose_model
58. Determining the flexibility of regular and chaotic attractors
Marko Marhl, Matjaz Perc
Chaos, Solitons and Fractals 28 (2006) 822–833
http://www.matjazperc.com/publications/ChaosSolitonsFractals_28_822.pdf
59. Short Option S15: Chaos, Chance and Predictability
Prof. P. L. Read and Dr M. R. Allen
The University of Oxford Department of Physics
http://www.atm.ox.ac.uk/user/read/chaos/lect5.pdf
60. On the Dynamics of a New Simple 2-D Rational Discrete Mapping
Elhadj, Zeraoulia; Sprott, J. C.
http://sprott.physics.wisc.edu/pubs/paper310.htm
61. A NEW CHAOTIC ATTRACTOR FROM 2D DISCRETE MAPPING VIA BORDER-COLLISION PERIOD-DOUBLING SCENARIO
Elhadj, Zeraoulia
http://emis.matem.unam.mx/journals/HOA/DDNS/Volume2005_3/238.pdf
62. Cellular Neural Networks, Multi-Scroll Chaos And Synchronization
Müstak E. Yalcin, Johan A. K. Suykens, Joos Vandewalle
World Scientific Series on Nonlinear Science Series A: Volume 50
http://books.google.de/books/about/Cellular_Neural_Networks_Multi_Scroll_Ch.html?hl=de&id=E_Nk5UQoE94C
63. A New Four-Scroll Chaotic Attractor Consisted of Two-Scroll Transient Chaotic and Two-Scroll Ultimate Chaotic
Yuhua Xu, Bing Li, Yuling Wang, Wuneng Zhou and Jian-an Fang
Hindawi Publishing Corporation; Mathematical Problems in Engineering; Volume 2012, Article ID 438328, 12 pages
http://www.hindawi.com/journals/mpe/2012/438328/ref/
64. A family of n-scroll hyperchaotic attractors and their realization
Simin Yu, Jinhu Lü, Guanrong Chen
Physics Letters A 364 (2007) 244–251
http://lsc.amss.ac.cn/~ljh/07YLC.pdf
65. Invariant Sets for Windows: Resonance Structures, Attractors, Fractals and Patterns
Albert D. Morozov, Timothy N. Dragunov, Olga V. Malysheva
World Scientific Series on Nonlinear Science, Series a
http://books.google.de/books
66. Chaos in Circuits and Systems
Guanrong Chen, Tetsushi Ueta, Tetsishi Ueta
World Scientific Series on Nonlinear Science, Series B
http://books.google.de/books
67. A Two-dimensional Discrete Mapping with Multifold Chaotic Attractors
Zeraoulia Elhadj, J. C. Sprott
Electronic Journal of Theoretical Physics; EJTP 5, No. 17 (2008) 111-124
http://sprott.physics.wisc.edu/pubs/paper308.htm
68. Fractals, Chaos
Paul Bourke
http://paulbourke.net/fractals/
69. Herrmann, Dietmar
Algorithmen für Fraktale und Chaostheorie
Addison Wesley, 1994
ISBN 3-89319-633-1
70. Positive Knots and Robinson's Attractor
Michael C. Sullivan, Southern Illinois University Carbondale
http://opensiuc.lib.siu.edu/math_articles/74/
71. Chaoscope.org
3D strange attractors rendering software
http://www.chaoscope.org/manual.htm
72. Study on the dynamical behaviors of a two-dimensional discrete system
Yinghui Gao, Bing Liu
Nonlinear Analysis 70 (2009) 4209-4216
http://n-vasegh.ir/Chaos/Ushiki_map.pdf
73. Ergodic theory of chaos and strange attractors
J.-P. Eckmann, D. Ruelle
http://www.ihes.fr/~ruelle/PUBLICATIONS/%5B81%5D.pdf
74. Chua's Equation With Cubic Nonlinearity (1996)
Anshan Huang , Ladislav Pivka , Chai Wah Wu , Martin Franz
Electronics Research Laboratory and Department of Electrical Engineering and Computer Sciences University of California, Berkeley
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.4863
75. Attractors of discrete dynamical systems
Discrete Dynamical Systems and Nonlinear Difference Equations
http://www.discretedynamics.net/Attractors/attractors.htm
76. Popcorn
Softology Tutorial
http://softology.com.au/tutorials/attractors2d/tutorial.htm
77. Pickover Attractors
FractInt
http://www.nahee.com/spanky/www/fractint/pickover.html
78. Analysis, nonlinear control, and chaos generator circuit of another strange chaotic system
Ihsan PEHLIVAN, Zhouchao WEI
Turk J Elec Eng & Comp Sci
http://journals.tubitak.gov.tr/havuz/elk-1103-14.pdf
79. BIFURCATION ANALYSIS OF THE QI 3-D FOUR-WING CHAOTIC SYSTEM
Yanxia Sun, Guoyuan Qi, Zenghui Wang, Barend Jacobus van Wyk
ACTA PHYSICA POLONICA B, Vol. 41 (2010)
http://th-www.if.uj.edu.pl/acta/vol41/pdf/v41p0767.pdf
80. THE DESIGN OF ADAPTIVE CONTROLLER AND SYNCHRONIZER FOR QI-CHEN SYSTEM WITH UNKNOWN PARAMETERS
Sundarapandian Vaidyanathan
International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol.2, No.1, February 2012
http://airccse.org/journal/ijcsea/papers/2112ijcsea08.pdf
81. A new four-dimensional chaotic system
Chen Yong and Yang Yun-Qing
Chin. Phys. B Vol. 19, No. 12 (2010) 120510
http://faculty.ecnu.edu.cn/picture/article/202/38/44/0161a10f4b1f8813a86cb2bcb6df/66150550-4823-4061-a3ad-bfd2026325d4.pdf.x
82. Highly Complex Chaotic System with Piecewise Linear Nonlinearity and Compound Structures
Wimol San-Um, Banlue Srisuchinwong
JOURNAL OF COMPUTERS, VOL. 7, NO. 4, APRIL 2012
http://ojs.academypublisher.com/index.php/jcp/article/download/jcp070410411047/4679
83. A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term
Fei Yu, Chunhua Wang
ETASR - Engineering, Technology & Applied Science Research Vol. 2, o. 2, 2012, 209-215
http://www.etasr.com/index.php/ETASR/article/download/86/119
84. Controllable V-Shape Multi-Scroll Butter y Attractor: System and Circuit Implementation
M. AFFAN ZIDAN, A. G. RADWAN, K. N. SALAMA
JOURNAL OF COMPUTERS, VOL. 7, NO. 4, APRIL 2012
http://archive.kaust.edu.sa/kaust/bitstream/10754/235271/1/V_Shape_Final.pdf
85. Designing modified projective synchronization for fractional order chaotic systems
Runzi Luo, Shucheng Deng, Zhengmin Wei
http://litis.univ-lehavre.fr/iccsaPeople/media/data/CSFOS-05.pdf
86. Automatic synthesis of 2D-n-scrolls chaotic systems by behavioral modeling
J. M. Munoz-Pacheco, E. Tlelo-Cuautle
Journal of Applied Research and Technology, 2009, Vol. 7, 5-14
http://www.doaj.org/doaj?func=abstract&id=865075
87. ACTIVE CONTROLLER DESIGN FOR THE GENERALIZED PROJECTIVE SYNCHRONIZATION OF THREE-SCROLL CHAOTIC SYSTEMS
Sarasu Pakiriswamy and Sundarapandian Vaidyanathan
International Journal of Advanced Information Technology (IJAIT) Vol. 2, No.1, February 2012
http://airccse.org/journal/IJAIT/papers/2112ijait04.pdf
88. n-DOUBLE SCROLL HYPERCUBES IN 1-D CNNs
J. A. K. SUYKENS, L. O. CHUA
International Journal of Bifurcation and Chaos, Vol. 7, No. 8 (1997) 1873-1885
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.6086
89. Multiscroll in coupled Lorenz oscillators
S.K.Dana, B.K. Singh, S.Chakraborty, J.Kurths, G.Osipov, R.C.Yadav, P.K.Roy, C.-K.Hu
National Conference on Nonlinear Systems and Dynamics (NCNSD)
http://www.ncnsd.org/proceedings/proceeding08/paper/10.pdf
90. A Family of n-Scroll Attractors from a Generalized Chua's Circuit
Johan A. K. Suykens , Anshan Huang , Leon O. Chua
National Conference on Nonlinear Systems and Dynamics (NCNSD)
http://130.203.133.150/viewdoc/similar;jsessionid=E6383228578535C0E22853418AC14CC9?doi=10.1.1.7.3191&type=cc
91. Synchronization of Identical and Non-identical 4-D Chaotic Systems via Lyapunov Direct Method
A. N. Njah, O.D. Sunday
International Journal of Nonlinear Science Vol.8(2009) No.1,pp. 3-10
http://www.worldacademicunion.com/journal/1749-3889-3897IJNS/IJNSVol08No1Paper01.pdf
92. MULTISCROLL IN COUPLED DOUBLE SCROLL TYPE OSCILLATORS
SYAMAL KUMAR DANA, BRAJENDRA K. SINGH, SATYABRATA.CHAKRABORTY, RAM CHANDRA YADAV, JÜRGEN KURTHS, GREGORY V. OSIPOV, PRODYOT KUMAR ROY, CHIN-KUN HU
International Journal of Bifurcation and Chaos, Vol. 18, No. 10 (2008) 2965-2980
http://www.phys.sinica.edu.tw/~statphys/publications/2008_full_text/S_K_Dana_IJBC_18_2965(2008).pdf
93. A Generic Framework for Robust Image Encryption Using Multiple Chaotic Flows
Gelli MBSS Kumar and V. Chandrasekaran
INTERNATIONAL JOURNAL OF COMPUTATIONAL COGNITION (HTTP://WWW.IJCC.US), VOL. 8, NO. 3, SEPTEMBER 2010
www.yangsky.us/ijcc/pdf/ijcc83/IJCC823.pdf
94. Dynamical Systems and Chaos
Henk Broer and Floris Takens
Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen
http://www.math.rug.nl/~broer/pdf/nova.pdf
95. Chaos topology
Robert Gilmore et al. (2008), Scholarpedia, 3(7):4592
http://www.scholarpedia.org/article/Chaos_topology
96. Chaos blog - JLS
ACT chaotic attractor
http://jlswbs.blogspot.de/2011/10/act.html
97. Chaos blog - JLS
Lorenz-Mod1 chaotic attractor
http://jlswbs.blogspot.de/2011/11/lorenz-mod1.html
98. Chaos blog - JLS
Lorenz-Mod2 chaotic attractor
http://jlswbs.blogspot.de/2011/11/lorenz-mod2.html
99. Irregular Attractors
VADIM S. ANISHCHENKO and GALINA I. STRELKOVA
Discrete Dynamics in Nature and Society, Vol. 2, pp. 53-72
http://www.emis.de/journals/HOA/DDNS/2/153.pdf
100. THE SYNCHRONIZATION OF TWO FOUR-DIMENSIONAL CHAOTIC SYSTEMS WITH CUBIC NONLINEARITIES
Servilia OANCEA, Ioan GROSU, Andrei Victor OANCEA
Lucrari Stiintifice – vol. 53, Nr. 2/2010, seria Agronomie
http://www.revagrois.ro/PDF/2010_2_50.pdf
101. On bifurcations of the Lorenz attractor in the Shimizu-Morioka model
Andrey L. Shil'nikov
Physica D 62 (1993) 338-346
http://saddle.gsu.edu/research/shimizu.pdf
102. A New 3D Four-Wing Chaotic System with Cubic Nonlinearity and Its Circuit Implementation
LIU Xing-Yun
CHIN. PHYS. LETT. Vol. 26, No. 9 (2009) 090504
http://cpl.iphy.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=41688
103. A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system
Dong En-Zeng, Chen Zai-Ping, Chen Zeng-Qiang, and Yuan Zhu-Zhi
Chinese Physics B, Vol 18 No 7, July 2009
http://iopscience.iop.org/1674-1056/18/7/010
104. ADAPTIVE HYBRID CHAOS SYNCHRONIZATION OF LORENZ-STENFLO AND QI 4-D CHAOTIC SYSTEMS WITH UNKNOWN PARAMETERS
Sundarapandian Vaidyanathan
International Journal in Foundations of Computer Science & Technology,Vol. 2, No.1, January 2012
http://airccse.org/journal/ijfcst/papers/2112ijfcst02.pdf
105. GLOBAL CHAOS SYNCHRONIZATION OF HYPERCHAOTIC QI AND HYPERCHAOTIC JHA SYSTEMS BY ACTIVE NONLINEAR CONTROL
Sundarapandian Vaidyanathan
International Journal of Information Sciences and Techniques (IJIST) Vol.2, No.3, May 2012
http://airccse.org/journal/IS/papers/2312ijist07.pdf
106. Cat Map
Wikipedia
http://en.wikipedia.org/wiki/Arnold%27s_cat_map
107. On Solving Coullet System by Differential Transformation Method
Mehmet Merdan, Ahmet Gökdogan and Vedat Suat Ertürk
Cankaya University Journal of Science and Engineering Volume 8 (2011), No. 1, 111-121
http://cujse.cankaya.edu.tr/archive/8_1/09_cujse_10051.pdf
108. A 3-D four-wing attractor and its analysis
Zenghui Wang, Yanxia Sun, Barend Jacobus van Wyk, Guoyuan Qi and Michael Antonie van Wyk
Brazilian Journal of Physics, vol. 39, no. 3, September, 2009
http://www.sbfisica.org.br/bjp/files/v39_547.pdf
109. Tent Map
Wikipedia
http://en.wikipedia.org/wiki/Tent_map
110. The Coupled Logistic Map: A Simple Model for the Effects of Spatial Heterogeneity on Population Dynamics
ALUN L. LLOYD
J. theor. Biol. (1995) 173, 217-230
http://www4.ncsu.edu/~allloyd/pdf_files/jtb_95.pdf
111. ON THE INTEGRABILITY OF A MUTHUSWAMY-CHUA SYSTEM
JAUME LLIBRE, CLAUDIA VALLS
Grup de Sistemes Dinàmics de la UAB
http://www.gsd.uab.cat/cgi-bin/download?ID=LliVal2011n.abstract.pdf-d9656c68d387b201c7063e7bda9aaabe.pdf;OD=LliVal2011n.abstract.pdf
112. TOPOLOGICAL ANALYSIS OF CHAOTIC SOLUTION OF A THREE-ELEMENT MEMRISTIVE CIRCUIT
JEAN-MARC GINOUX, CHRISTOPHE LETELLIER, LEON O. CHUA
International Journal of Bifurcation and Chaos, Vol. 20, No. 11 (2010) 3819–3827
http://www.researchgate.net/publication/220272267_Topological_Analysis_of_Chaotic_Solution_of_a_Three-Element_Memristive_Circuit/file/79e414ff1f564b1262.pdf
113. Chaotic Modelling and Simulation: Analysis of Chaotic Models, Attractors and Forms
Christos H. Skiadas, Charilaos Skiadas
CRC Press, ISBN-10: 142007900X
114. Java 1.1 Applet for the Sine Attractor
Home Page Barry G. Adams
Laurentian University
http://www.cs.laurentian.ca/badams/Attractors2D/SineApplet.html
115. Two Dimensional Maps - Equations
Chaos on the Web: Physics 161: Introduction to Chaos
Prof. Michael Cross, California Institute of Technology
http://www.cmp.caltech.edu/~mcc/Chaos_Course/Map2D_docs/Equations.html
116. Stability Properties of Nonhyperbolic Chaotic Attractors under Noise
Suso Kraut and Celso Grebogi
http://arxiv.org/pdf/nlin/0411064
117. Bifurcation Analysis, Chaos and Control in the Burgers Mapping
E. M. ELabbasy, H. N. Agiza, H. EL-Metwally, A. A. Elsadany
International Journal of Nonlinear Science, Vol.4(2007) No.3,pp.171-185
http://www.worldacademicunion.com/journal/1749-3889-3897IJNS/IJNSVol4No3Paper02.pdf
118. Antiphase synchronism in chaotic systems
Ling-Yuan Cao and Ying-Cheng Lai
PHYSICAL REVIEW E, VOLUME 58, NUMBER 1 JULY 1998
http://chaos1.la.asu.edu/~yclai/papers/PRE_98_CL.pdf
119. Intermittent Strange Nonchaotic Attractors in Quasiperiodically Forced Systems
Woochang Lim and Sang-Yoon Kim
Journal of the Korean Physical Society, Vol. 44, No. 3, March 2004, pp. 514-517
http://www.kps.or.kr/jkps/downloadPdf.asp?articleuid=%7B0C8761CA-188C-4867-88CF-D7E164BEE044%7D
120. Fractalization of a torus as a strange nonchaotic attractor
Takashi Nishikawa and Kunihiko Kaneko
PHYSICAL REVIEW E VOLUME 54, NUMBER 6 DECEMBER 1996
http://chaos.c.u-tokyo.ac.jp/papers/pr/nishikawa.pdf
121. Dynamics of Small Perturbations of Orbits on a Torus in a Quasiperiodically Forced 2D Dissipative Map
Alexey Yu. Jalnine, Sergey P. Kuznetsov, Andrew H. Osbaldestin
http://arxiv.org/abs/nlin/0506047
122. A GENERALIZED 3-D FOUR-WING CHAOTIC SYSTEM
ZENGHUI WANG, GUOYUAN QI, YANXIA SUN, MICHAEL ANTONIE VAN WYK, BAREND JACOBUS VAN WYK
Int. J. Bifurcation Chaos 19, 3841 (2009)
http://www.worldscientific.com/doi/abs/10.1142/S0218127409025171
123. AN AMPLITUDE-ADJUSTABLE FOUR-WING CHAOTIC ATTRACTOR AND ITS CIRCUIT DESIGN
CHUNBIAO LI, IHSAN PEHLIVAN, J.C. SPROTT
http://sprott.physics.wisc.edu/pubs/paper393.pdf
124. The Basic Properties of Zhou’s Attractor
Ummu Atiqah Mohd Roslan, Zabidin Salleh and Adem Kilicman
Proceeding of ICORAFSS 2009, 2-4 June 2009, The ZON Regency Hotel, Johor Bahru, Malaysia
http://zabidin.blog.umt.edu.my/files/2009/08/Zhous-Attractor.pdf
125. Non-existence of Shilnikov Chaos in Continuous-time Systems
Zeraoulia Elhadj and J. C. Sprott
http://sprott.physics.wisc.edu/pubs/paper357.pdf
126. Ontologies: On the Concepts of: Possibility, Possible, “Acaso”, Aleatorial and Chaos
Maria Odete Madeira, Carlos Pedro Gonçalves
http://fraclab.saclay.inria.fr/works/miscellaneous/Ontologies%20On%20the%20Concepts%20of%20Possibility-%20Possible-%20Acaso-%20Aleatorial%20and%20Chaos.pdf
127. Untersuchung der Klimavariabilität in NW Argentinien mit Hilfe der quantitativen Analyse von Recurrence Plots
Diplomarbeit Norbert Marwan
Lehrstuhl Theoretische Physik Institut für Physik und Astronomie der Universität Potsdam
http://www.recurrence-plot.tk/Diplomarbeit.Marwan.pdf
128. Rekurrenzplot
Wikipedia
http://de.wikipedia.org/wiki/Rekurrenzplot
129. Introduction to Recurrence Plots in Matlab
Professor Janet Wiles
School of Information Technology and Electrical Engineering University of Queensland
http://tdlc.ucsd.edu/events/sfi/Janet_Wiles_Recurrence_Plots_Lab.pdf
130. Recurrence Quantification Analysis of Nonlinear Dynamical Systems
Charles L. Webber, Jr. and Joseph P. Zbilut
http://www.nsf.gov/sbe/bcs/pac/nmbs/chap2.pdf
131. Recurrence plots for the analysis of complex systems
Norbert Marwan, M. Carmen Romano, Marco Thiel, Jürgen Kurths
Nonlinear Dynamics Group, Institute of Physics, University of Potsdam, Potsdam 14415, Germany
http://www.math.uni-bremen.de/zetem/DFG-Schwerpunkt/jahrestreffen07/skripte/Marwan.pdf
132. RECURRENCE PLOTS AND CROSS RECURRENCE PLOTS
http://www.recurrence-plot.tk
133. Legendre-Polynom
Wikipedia
http://de.wikipedia.org/wiki/Legendre-Polynom
134. Tschebyschow-Polynom
Wikipedia
http://de.wikipedia.org/wiki/Tschebyschow-Polynom
135. Sinc-Funktion
Wikipedia
http://de.wikipedia.org/wiki/Sinc-Funktion
136. Sigmoid Funktion
Wikipedia
http://de.wikipedia.org/wiki/Sigmoidfunktion
137. Gabor Funktion
Paul Bourke
http://paulbourke.net/miscellaneous/functions/
138. Peter de Jong Attractors
Paul Bourke
http://paulbourke.net/fractals/peterdejong/
139. Peter de Jong Attractors
Complexification
http://www.complexification.net/gallery/machines/peterdejong
140. Simple Attractors
Gallery of Mathematical and Generative Art
http://www.subblue.com/gallery/album/31
141. Simple Attractors
flickr
http://www.flickr.com/photos/subblue/sets/72157605272650927/detail/
142. Clifford Attractors
Paul Bourke
http://paulbourke.net/fractals/clifford/


[zurück] [Inhaltsverzeichnis] [vor]