[zurück]

6. Literatur

[vor]
  1. Liang Fang, Lili Ni, Rui Chen: ThreeModified EfficientIterativeMethodsfor Non-linear Equations
  2. Mohamed S.M. Bahgat, M.A. Hafiz: THREE-STEP ITERATIVE METHOD WITH EIGHTEENTH ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS
  3. Namir Shammas: Ostrowski’s Method for Finding Roots
  4. Gregory Louis Zitelli: Fractals from root finding algorithms
  5. "Numerical methods for roots of polynomials. Part I" by John M. McNamee
  6. Rajinder Thukral: Eighth-Order Iterative Methods without Derivatives for Solving Nonlinear Equations
  7. JUAN L. VARONA: GRAPHIC AND NUMERICAL COMPARISON BETWEEN ITERATIVE METHODS
  8. Nils B. Lahr: Visualizing Newton's Method on Fractional Exponents
  9. Young Ik Kim: A FOURTH-ORDER FAMILY OF TRIPARAMETRIC EXTENSIONS OF JARRATT'S METHOD
  10. M. Fardi, M. Ghasemi, A. Davari: New Iterative Methods With Seventh-Order Convergence For Solving Nonlinear Equations
  11. Dr. Vinay Kumar, Prof. C. P. Katti: On high order methods for solution of non-linear equation
  12. Nikolay Kyurkchiev, Anton Iliev: A NOTE ON THE “CONSTRUCTING” OF NONSTATIONARY METHODS FOR SOLVING NONLINEAR EQUATIONS WITH RAISED SPEED OF CONVERGENCE.
  13. Osama Yusuf Ababneh: New Newton’s Method with Third-order Convergence for Solving Nonlinear Equations
  14. Bijan Rahimi, Behzad Ghanbari and Mehdi Gholami Porshokouhi: Some Third-Order Modifications of Newton’s Method
  15. M.A. Hafiz, Salwa M. H. Al-Goria: NEW NINTH– AND SEVENTH–ORDER METHODS FOR SOLVING NONLINEAR EQUATIONS
  16. M.A. Hafiz, Salwa M. H. Al-Goria: SOLVING NONLINEAR EQUATIONS USING A NEW TENTH-AND SEVENTH-ORDER METHODS FREE FROM SECOND DERIVATIVE
  17. Newton Basins
  18. Simon Tatham: Fractals derived from Newton-Raphson iteration
  19. Images des Maths: La méthode de Newton et son fractal
  20. Robert L. Devaney: Recent Research Papers
  21. John Whitehouse: Newton-Raphson Patterns
  22. Gregory Louis Zitelli: Fractals From Root Finding Algorithms
  23. efg's Computer Lab Fractals & Chaos: Glynn Function Study Center Gallery
  24. Daniel Ashlock: Real and complex fractals.
  25. Kai Schröder: Fraktale und Chemie --- Eine Einführung
  26. Adam Majewski: Fractals
  27. Mikael Hvidtfeldt Christensen: Distance Estimation
  28. Patrick Rammelt: 3D-Fraktale
  29. Christian Symmank: Bilder der Mandelbrot-Menge
  30. Xander Henderson: Newton Fractals
  31. Distance estimation for Newton fractals
  32. Dr. rer. nat. Lutz Lehmann: Julia-like fractals for roots finding methods
  33. Florian Brucker: Fractals from Iterated Root-Finding Methods
  34. Pictures of Julia and Mandelbrot sets
  35. Michael Becker: Some Julia sets
  36. Paul Bourke: Julia Set Fractal (2D)
  37. Evgeny Demidov: The Mandelbrot and Julia sets Anatomy Contents
  38. Ingvar Kullberg: The chaotic series of fractal articles
  39. Fraczine: Newton Raphson
  40. William Gilbert: Fractal Gallery
  41. Bart D. Stewart: Newton, Chebyshev, and Halley Basins of Attraction; A Complete Geometric Approach
  42. Yongil Kim: New Sixth-Order Improvements of the Jarratt Method
  43. Muhammad Rafiullah: A NEW SIXTH ORDER ITERATIVE METHOD FOR NONLINEAR EQUATIONS
  44. Changbum Chuna, Beny Neta: Some modification of Newton's method by the method of undetermined coefficients
  45. Farooq Ahmad, a Sajjad Hussain, Sifat Hussain, Arif Rafiq: New Efficient Fourth Order Method for Solving Nonlinear Equations
  46. M. Heydari, S. M. Hosseini, G. B. Loghmani: ON TWO NEW FAMILIES OF ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS WITH OPTIMAL ORDER
  47. J. Jayakumar: Generalized Simpson-Newton's Method for Solving Nonlinear Equations with Cubic Convergence
  48. Ramandeep Behl and S. S. Motsa: Geometric construction of eighth-order optimal families of Ostrowski's method
  49. Jishe Feng: A New Two-step Method for Solving Nonlinear Equations
  50. Tahereh Eftekhari:: A New Sixth-Order Steffensen-Type Iterative Method for Solving Nonlinear Equations
  51. Shengfeng Li, Rujing Wang: Two Fourth-order Iterative Methods Based on Continued Fraction for Root-finding Problems
  52. Sanjay K. Khattri and S. Abbasbandy: OPTIMAL FOURTH ORDER FAMILY OF ITERATIVE METHODS
  53. B. Neta: On Popovski's method for nonlinear equations
  54. Sanjay K Khattri and Ioannis K Argyros: Unification of sixth-order iterative methods
  55. M. Heydari and G.B. Loghmani: Third-Order and Fourth-Order Iterative Methods Free from Second Derivative for Finding Multiple Roots of Nonlinear Equations
  56. Sanjay Kumar Khattri: Quadrature Based Optimal Iterative Methods with Applications in High-Precision Computing
  57. Reza Ezzati1, Elham Azadegan: A simple iterative method with fifth-order convergence by using Potra and Ptak's method
  58. F. Mirzaee and A. Hamzeh: Sixth Order Method for Solving Nonlinear Equations
  59. JUAN L. VARONA: GRAPHIC AND NUMERICAL COMPARISON BETWEEN ITERATIVE ME
  60. Chi Chun-Mei and Feng Gao: A Few Numerical Methods for Solving Nonlinear Equations
  61. The Collatz Conjecture as a motivator for Complexity and Chaos
  62. Wikipedia: Collatz-Problem
  63. Hochschule für Angewandte Wissenschaften Hamburg: Das Collatz-Problem
  64. Muhammad Rafiullah und Muhammad Haleem: Three-Step Iterative Method with Sixth Order Convergence for Solving Nonlinear Equations
  65. Malik Zaka Ullah, Lala Muhammad Assas, Fayyaz Ahmad, A.S. Al-Fhaid: A correction note on "Three-Step Iterative Methods with Sixth Order Convergence for Solving Nonlinear Equations"
  66. R. Ezzati und F. Saleki: On the Construction of New Iterative Methods with Fourth-Order Convergence by Combining Previous Methods
  67. FAYYAZ AHMAD AND D. GARCA-SENZ: IMPROVING THREE-POINT ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS
  68. R. Thukral: Two-step Iterative Methods with Sixth-order Convergence for Solving Nonlinear Equations
  69. Sara T. M. Suleiman: Solving System of Nonlinear Equations Using Methods in the Halley Class
  70. Sanjay K. Khattri, Ioannis K. Argyros: HOW TO DEVELOP FOURTH AND SEVENTH ORDER ITERATIVE METHODS?
  71. M. Matin Far, M. Aminzadeh, S. Asadpour: A New Three-step Iterative Method for Solving Nonlinear Equations
  72. Alicia Cordero, Juan R. Torregrosa, Pura Vindel: Dynamics of a family of Chebyshev-Halley type methods
  73. Dissertation Arnd Lauber: On the Stability of Julia Sets of Functions having Baker Domains
  74. Dissertation Erin Elizabeth Williams: Categorization of all Newton maps of rational functions conjugate to quadratic polynomials
  75. Wolf Jung: Local and asymptotic similarity in one-parameter families
  76. K.Karthikeyan, S.K.Khadar Babu, M.Sundaramurthy, B.Rajesh Anand: SOME MULTI-STEP ITERATIVE ALGORITHMS FOR MINIMIZATION OF UNCONSTRAINED NON LINEAR FUNCTIONS
  77. Paul Bourke: Apollonian Gasket
  78. Wikipedia: Apollonian Gasket
  79. Wolfram Mathworld : Apollonian Gasket
  80. Wikipedia: Satz von Descartes
  81. Jasper Weinrich-Burd: A Thompson-Like Group for the Bubble Bath Julia Set
  82. Fractal Geometry: Differences between ‘Julia Set’ and ‘Julius Newtree Set’
  83. hpdz.net : The Nova Fractal
  84. The Online Fractal Generator : Newtonian Fractals
  85. Fractint: Summary of Fractal Types


[zurück] [Inhaltsverzeichnis] [vor]