""" Hexakisoktaeder 2 16.01.2021 www.3d-meier.de http://dmccooey.com/polyhedra/BiscribedDisdyakisDodecahedron.html """ import c4d import math # Variablen und Konstanten Titel = 'Hexakisoktaeder 2' # Name NP = 26 # Anzahl Punkte N3 = 48 # Anzahl Dreiecke Radius = 0.5 # Radius der Eckpunktkugeln C0 = math.sqrt(2) C1 = (3 + 6 * math.sqrt(2)) / 7 C2 = (6 + 9 * math.sqrt(2)) / 7 Punkte = [(0.0, 0.0, C2), (0.0, 0.0, -C2), ( C2, 0.0, 0.0), (-C2, 0.0, 0.0), (0.0, C2, 0.0), (0.0, -C2, 0.0), ( C1, 0.0, C1), ( C1, 0.0, -C1), (-C1, 0.0, C1), (-C1, 0.0, -C1), ( C1, C1, 0.0), ( C1, -C1, 0.0), (-C1, C1, 0.0), (-C1, -C1, 0.0), (0.0, C1, C1), (0.0, C1, -C1), (0.0, -C1, C1), (0.0, -C1, -C1), ( C0, C0, C0), ( C0, C0, -C0), ( C0, -C0, C0), ( C0, -C0, -C0), (-C0, C0, C0), (-C0, C0, -C0), (-C0, -C0, C0), (-C0, -C0, -C0)] Dreiecke = [(0, 6, 18, 18), (0, 18, 14, 14), (0, 14, 22, 22), (0, 22, 8, 8), (0, 8, 24, 24), (0, 24, 16, 16), (0, 16, 20, 20), (0, 20, 6, 6), (1, 7, 21, 21), (1, 21, 17, 17), (1, 17, 25, 25), (1, 25, 9, 9), (1, 9, 23, 23), (1, 23, 15, 15), (1, 15, 19, 19), (1, 19, 7, 7), (2, 6, 20, 20), (2, 20, 11, 11), (2, 11, 21, 21), (2, 21, 7, 7), (2, 7, 19, 19), (2, 19, 10, 10), (2, 10, 18, 18), (2, 18, 6, 6), (3, 8, 22, 22), (3, 22, 12, 12), (3, 12, 23, 23), (3, 23, 9, 9), (3, 9, 25, 25), (3, 25, 13, 13), (3, 13, 24, 24), (3, 24, 8, 8), (4, 10, 19, 19), (4, 19, 15, 15), (4, 15, 23, 23), (4, 23, 12, 12), (4, 12, 22, 22), (4, 22, 14, 14), (4, 14, 18, 18), (4, 18, 10, 10), (5, 11, 20, 20), (5, 20, 16, 16), (5, 16, 24, 24), (5, 24, 13, 13), (5, 13, 25, 25), (5, 25, 17, 17), (5, 17, 21, 21), (5, 21, 11, 11)] Faktor = 100 # Skalierungsfaktor k = 1 # Korrekturfaktor #************************************************************************ def CreateNullobjekt1(): obj = c4d.BaseObject(c4d.Onull) obj.SetName(Titel) obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateNullobjekt2(): obj = c4d.BaseObject(c4d.Onull) obj.SetName('Ecken') obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateNullobjekt3(): obj = c4d.BaseObject(c4d.Onull) obj.SetName('Kanten') obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateNullobjekt4(): obj = c4d.BaseObject(c4d.Onull) obj.SetName('Polygone') obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateDreiecke(): obj = c4d.BaseObject(c4d.Opolygon) obj.ResizeObject(NP, N3) obj.SetName('Dreiecke') # Punkte uebergeben for i in xrange(NP): obj.SetPoint(i, c4d.Vector(Punkte[i][0]*Faktor*k, Punkte[i][1]*Faktor*k, Punkte[i][2]*Faktor*k)) # Dreiecke setzen for i in xrange(N3): obj.SetPolygon( i, c4d.CPolygon(Dreiecke[i][0], Dreiecke[i][1], Dreiecke[i][2], Dreiecke[i][3])) obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateSplineDreiecke(): obj = c4d.BaseObject(c4d.Ospline) obj.SetName("Spline-Dreiecke") obj.ResizeObject(N3*3) zz = 0 for i in xrange(N3): for j in xrange(3): x = Punkte[Dreiecke[i][j]][0] y = Punkte[Dreiecke[i][j]][1] z = Punkte[Dreiecke[i][j]][2] obj.SetPoint(zz, c4d.Vector(x*Faktor*k, y*Faktor*k, z*Faktor*k)) zz = zz + 1 # Segmente erzeugen obj.MakeVariableTag(c4d.Tsegment, N3) for i in range(0, N3): obj.SetSegment(i, 3, True) # Spline schliessen obj[c4d.SPLINEOBJECT_CLOSED] = True obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def main(): nullobj1 = CreateNullobjekt1() nullobj2 = CreateNullobjekt2() # Ecken nullobj3 = CreateNullobjekt3() # Kanten nullobj4 = CreateNullobjekt4() # Polygone plyobj1 = CreateDreiecke() splobj1 = CreateSplineDreiecke() doc.InsertObject(nullobj1, None, None, True) doc.InsertObject(nullobj4, nullobj1, None, True) doc.InsertObject(nullobj3, nullobj1, None, True) doc.InsertObject(nullobj2, nullobj1, None, True) doc.InsertObject(splobj1, nullobj3, None, True) doc.InsertObject(plyobj1, nullobj4, None, True) # Kugeln auf Eckpunkte setzen for i in range(0, NP): obj = c4d.BaseObject(c4d.Osphere) obj[c4d.PRIM_SPHERE_RAD] = Radius obj.SetName(str(i)) x = Punkte[i][0] y = Punkte[i][1] z = Punkte[i][2] obj.SetAbsPos(c4d.Vector(x*Faktor*k, y*Faktor*k, z*Faktor*k)) doc.InsertObject(obj, nullobj2, None, True) c4d.EventAdd() if __name__=='__main__': main()