""" Truncated great dodecahedron 21.05.2021 www.3d-meier.de """ import c4d import math # Variablen und Konstanten Titel = 'Truncated great dodecahedron' # Name NP = 60 # Anzahl Punkte N10 = 12 # Anzahl Zehnecke N5P = 12 # Anzahl Pentagramme Radius = 1.5 # Radius der Eckpunktkugeln a = (math.sqrt(5)-1)/4.0 b = (3+math.sqrt(5))/4.0 c = 0.5 d = (5+math.sqrt(5))/4.0 e = (1+math.sqrt(5))/4.0 f = (1+math.sqrt(5))/2.0 Punkte = [( a, b, b), ( a, b, -b), ( a, -b, b), ( a, -b, -b), (-a, b, b), (-a, b, -b), (-a, -b, b), (-a, -b, -b), ( b, b, a), ( b, -b, a), (-b, b, a), (-b, -b, a), ( b, b, -a), ( b, -b, -a), (-b, b, -a), (-b, -b, -a), ( b, a, b), (-b, a, b), ( b, a, -b), (-b, a, -b), ( b, -a, b), (-b, -a, b), ( b, -a, -b), (-b, -a, -b), ( 0, c, d), ( 0, c, -d), ( 0, -c, d), ( 0, -c, -d), ( c, d, 0), ( c, -d, 0), (-c, d, 0), (-c, -d, 0), ( d, 0, c), (-d, 0, c), ( d, 0, -c), (-d, 0, -c), ( c, e, f), ( c, e, -f), ( c, -e, f), ( c, -e, -f), (-c, e, f), (-c, e, -f), (-c, -e, f), (-c, -e, -f), ( e, f, c), ( e, -f, c), (-e, f, c), (-e, -f, c), ( e, f, -c), ( e, -f, -c), (-e, f, -c), (-e, -f, -c), ( f, c, e), (-f, c, e), ( f, c, -e), (-f, c, -e), ( f, -c, e), (-f, -c, e), ( f, -c, -e), (-f, -c, -e)] Zehnecke = [( 6, 47, 51, 7, 39, 22, 34, 32, 20, 38), (35, 23, 43, 3, 49, 45, 2, 42, 21, 33), ( 5, 25, 27, 7, 51, 11, 57, 53, 10, 50), (30, 10, 53, 21, 42, 38, 20, 52, 8, 28), (50, 46, 4, 36, 16, 32, 34, 18, 37, 5), (41, 37, 18, 58, 13, 29, 31, 15, 59, 19), (48, 8, 52, 56, 9, 49, 3, 27, 25, 1), (46, 14, 55, 59, 15, 47, 6, 26, 24, 4), (12, 44, 0, 24, 26, 2, 45, 13, 58, 54), (36, 40, 17, 57, 11, 31, 29, 9, 56, 16), (44, 48, 1, 41, 19, 35, 33, 17, 40, 0), (39, 43, 23, 55, 14, 30, 28, 12, 54, 22)] Pentagramme = [(52, 16, 20, 56, 32), (55, 19, 23, 59, 35), (54, 34, 58, 22, 18), (28, 44, 8, 12, 48), (14, 10, 46, 30, 50), (25, 41, 5, 1, 37), ( 7, 43, 27, 39, 3), (26, 42, 6, 2, 38), ( 4, 40, 24, 36, 0), (53, 33, 57, 21, 17), (15, 51, 31, 47, 11), (29, 49, 13, 9, 45)] Faktor = 100 # Skalierungsfaktor k = 1 # Korrekturfaktor fuer Kantenlaenge ku = 256 # Unterteilung der Kugeln ru = math.sqrt((17+5*math.sqrt(5))/8.0) # Umkugelradius rk = (5+math.sqrt(5))/4.0 # Kantenkugelradius #************************************************************************ # Geradengleichung def Gerade(a, b, r): c = b-a d = a + r*c return d #************************************************************************ def CreateNullobjekt1(): obj = c4d.BaseObject(c4d.Onull) obj.SetName(Titel) obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateNullobjekt2(): obj = c4d.BaseObject(c4d.Onull) obj.SetName('Ecken') obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateNullobjekt3(): obj = c4d.BaseObject(c4d.Onull) obj.SetName('Kanten') obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateNullobjekt4(): obj = c4d.BaseObject(c4d.Onull) obj.SetName('Polygone') obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateNullobjekt5(): obj = c4d.BaseObject(c4d.Onull) obj.SetName('Kugeln') obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateZehnecke(): obj = c4d.BaseObject(c4d.Opolygon) obj.ResizeObject(NP, N10*5) obj.SetName('Zehnecke') # Punkte uebergeben for i in xrange(NP): obj.SetPoint(i, c4d.Vector(Punkte[i][0]*Faktor*k, Punkte[i][1]*Faktor*k, Punkte[i][2]*Faktor*k)) zz = 0 # Zähler für Polygone zurücksetzen for i in xrange(N10): obj.SetPolygon(zz, c4d.CPolygon(Zehnecke[i][0], Zehnecke[i][1], Zehnecke[i][9], Zehnecke[i][9])) zz = zz + 1 obj.SetPolygon(zz, c4d.CPolygon(Zehnecke[i][1], Zehnecke[i][2], Zehnecke[i][8], Zehnecke[i][9])) zz = zz + 1 obj.SetPolygon(zz, c4d.CPolygon(Zehnecke[i][2], Zehnecke[i][3], Zehnecke[i][7], Zehnecke[i][8])) zz = zz + 1 obj.SetPolygon(zz, c4d.CPolygon(Zehnecke[i][3], Zehnecke[i][4], Zehnecke[i][6], Zehnecke[i][7])) zz = zz + 1 obj.SetPolygon(zz, c4d.CPolygon(Zehnecke[i][4], Zehnecke[i][5], Zehnecke[i][6], Zehnecke[i][6])) zz = zz + 1 obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreatePentagramme(): obj = c4d.BaseObject(c4d.Opolygon) obj.ResizeObject(NP + N5P*5, N5P*7) obj.SetName('Pentagramme') phi = (1+math.sqrt(5))/2.0 r1 = phi/(2*phi + 1) r2 = (phi + 1)/(2*phi + 1) # Punkte uebergeben for i in xrange(NP): obj.SetPoint(i, c4d.Vector(Punkte[i][0]*Faktor*k, Punkte[i][1]*Faktor*k, Punkte[i][2]*Faktor*k)) for i in xrange(N5P): # Eckpunkte des Pentagramms in Vektoren umwandeln P0 = c4d.Vector(Punkte[Pentagramme[i][0]][0], Punkte[Pentagramme[i][0]][1], Punkte[Pentagramme[i][0]][2]) P1 = c4d.Vector(Punkte[Pentagramme[i][1]][0], Punkte[Pentagramme[i][1]][1], Punkte[Pentagramme[i][1]][2]) P2 = c4d.Vector(Punkte[Pentagramme[i][2]][0], Punkte[Pentagramme[i][2]][1], Punkte[Pentagramme[i][2]][2]) P3 = c4d.Vector(Punkte[Pentagramme[i][3]][0], Punkte[Pentagramme[i][3]][1], Punkte[Pentagramme[i][3]][2]) P4 = c4d.Vector(Punkte[Pentagramme[i][4]][0], Punkte[Pentagramme[i][4]][1], Punkte[Pentagramme[i][4]][2]) # Neue Punkte P5 = Gerade(P0, P2, r1) P6 = Gerade(P0, P2, r2) P7 = Gerade(P1, P3, r2) P8 = Gerade(P3, P0, r1) P9 = Gerade(P3, P0, r2) # Neue Punkte an Polygonobjekt uebergeben obj.SetPoint(5*i+NP, P5*Faktor*k) obj.SetPoint(5*i+NP+1, P6*Faktor*k) obj.SetPoint(5*i+NP+2, P7*Faktor*k) obj.SetPoint(5*i+NP+3, P8*Faktor*k) obj.SetPoint(5*i+NP+4, P9*Faktor*k) # Polygone setzen obj.SetPolygon(7*i+0, c4d.CPolygon(Pentagramme[i][0], 5*i+NP , 5*i+NP+4, 5*i+NP+4)) obj.SetPolygon(7*i+1, c4d.CPolygon(Pentagramme[i][1], 5*i+NP+1, 5*i+NP , 5*i+NP )) obj.SetPolygon(7*i+2, c4d.CPolygon(Pentagramme[i][2], 5*i+NP+2, 5*i+NP+1, 5*i+NP+1)) obj.SetPolygon(7*i+3, c4d.CPolygon(Pentagramme[i][3], 5*i+NP+3, 5*i+NP+2, 5*i+NP+2)) obj.SetPolygon(7*i+4, c4d.CPolygon(Pentagramme[i][4], 5*i+NP+4, 5*i+NP+3, 5*i+NP+3)) obj.SetPolygon(7*i+5, c4d.CPolygon(5*i+NP , 5*i+NP+1, 5*i+NP+2, 5*i+NP+3)) obj.SetPolygon(7*i+6, c4d.CPolygon(5*i+NP+3 , 5*i+NP+4, 5*i+NP , 5*i+NP )) obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateSplineZehnecke(): obj = c4d.BaseObject(c4d.Ospline) obj.SetName("Spline-Zehnecke") obj.ResizeObject(N10*10) zz = 0 for i in xrange(N10): for j in xrange(10): x = Punkte[Zehnecke[i][j]][0] y = Punkte[Zehnecke[i][j]][1] z = Punkte[Zehnecke[i][j]][2] obj.SetPoint(zz, c4d.Vector(x*Faktor*k, y*Faktor*k, z*Faktor*k)) zz = zz + 1 # Segmente erzeugen obj.MakeVariableTag(c4d.Tsegment, N10) for i in range(0, N10): obj.SetSegment(i, 10, True) # Spline schliessen obj[c4d.SPLINEOBJECT_CLOSED] = True obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def CreateSplinePentagramme(): obj = c4d.BaseObject(c4d.Ospline) obj.SetName("Spline-Pentagramme") obj.ResizeObject(N5P*5) zz = 0 for i in xrange(N5P): x = Punkte[Pentagramme[i][0]][0] y = Punkte[Pentagramme[i][0]][1] z = Punkte[Pentagramme[i][0]][2] obj.SetPoint(zz, c4d.Vector(x*Faktor*k, y*Faktor*k, z*Faktor*k)) zz = zz + 1 x = Punkte[Pentagramme[i][2]][0] y = Punkte[Pentagramme[i][2]][1] z = Punkte[Pentagramme[i][2]][2] obj.SetPoint(zz, c4d.Vector(x*Faktor*k, y*Faktor*k, z*Faktor*k)) zz = zz + 1 x = Punkte[Pentagramme[i][4]][0] y = Punkte[Pentagramme[i][4]][1] z = Punkte[Pentagramme[i][4]][2] obj.SetPoint(zz, c4d.Vector(x*Faktor*k, y*Faktor*k, z*Faktor*k)) zz = zz + 1 x = Punkte[Pentagramme[i][1]][0] y = Punkte[Pentagramme[i][1]][1] z = Punkte[Pentagramme[i][1]][2] obj.SetPoint(zz, c4d.Vector(x*Faktor*k, y*Faktor*k, z*Faktor*k)) zz = zz + 1 x = Punkte[Pentagramme[i][3]][0] y = Punkte[Pentagramme[i][3]][1] z = Punkte[Pentagramme[i][3]][2] obj.SetPoint(zz, c4d.Vector(x*Faktor*k, y*Faktor*k, z*Faktor*k)) zz = zz + 1 # Segmente erzeugen obj.MakeVariableTag(c4d.Tsegment, N5P) for i in range(0, N5P): obj.SetSegment(i, 5, True) # Spline schliessen obj[c4d.SPLINEOBJECT_CLOSED] = True obj.Message(c4d.MSG_UPDATE) return obj #************************************************************************ def main(): nullobj1 = CreateNullobjekt1() nullobj2 = CreateNullobjekt2() # Ecken nullobj3 = CreateNullobjekt3() # Kanten nullobj4 = CreateNullobjekt4() # Polygone nullobj5 = CreateNullobjekt5() # Umkugel, etc. plyobj1 = CreateZehnecke() plyobj2 = CreatePentagramme() splobj1 = CreateSplineZehnecke() splobj2 = CreateSplinePentagramme() doc.InsertObject(nullobj1, None, None, True) doc.InsertObject(nullobj5, nullobj1, None, True) doc.InsertObject(nullobj4, nullobj1, None, True) doc.InsertObject(nullobj3, nullobj1, None, True) doc.InsertObject(nullobj2, nullobj1, None, True) doc.InsertObject(splobj2, nullobj3, None, True) doc.InsertObject(splobj1, nullobj3, None, True) doc.InsertObject(plyobj2, nullobj4, None, True) doc.InsertObject(plyobj1, nullobj4, None, True) # Kugeln auf Eckpunkte setzen for i in range(0, NP): obj = c4d.BaseObject(c4d.Osphere) obj[c4d.PRIM_SPHERE_RAD] = Radius obj.SetName(str(i)) x = Punkte[i][0] y = Punkte[i][1] z = Punkte[i][2] obj.SetAbsPos(c4d.Vector(x*Faktor*k, y*Faktor*k, z*Faktor*k)) doc.InsertObject(obj, nullobj2, None, True) # Umkugel erzeugen obj = c4d.BaseObject(c4d.Osphere) obj[c4d.PRIM_SPHERE_SUB] = ku obj[c4d.PRIM_SPHERE_RAD] = ru*Faktor*k obj.SetName('Umkugel') obj[c4d.ID_BASEOBJECT_VISIBILITY_EDITOR] = 1 obj[c4d.ID_BASEOBJECT_VISIBILITY_RENDER] = 1 doc.InsertObject(obj, nullobj5, None, True) # Kantenkugel erzeugen obj = c4d.BaseObject(c4d.Osphere) obj[c4d.PRIM_SPHERE_SUB] = ku obj[c4d.PRIM_SPHERE_RAD] = rk*Faktor*k obj.SetName('Kantenkugel') obj[c4d.ID_BASEOBJECT_VISIBILITY_EDITOR] = 1 obj[c4d.ID_BASEOBJECT_VISIBILITY_RENDER] = 1 doc.InsertObject(obj, nullobj5, None, True) c4d.EventAdd() if __name__=='__main__': main()